
Scalingto Thousandsof Processorswith
BufferedCoscheduling

�

FabrizioPetrini

CCS-3Modeling,Algorithms,& Informatics
Computer& ComputationalSciencesDivision

LosAlamosNationalLaboratory
fabrizio@lanl.gov

http://www.c3.lanl.gov/~fabrizio

Abstract

In this paperwe describeBufferedCoscheduling,a new approachto design
the systemsoftware of large scaleparallel computers. A buffered coscheduled
systemcantolerateinefficient programs,programsthathave communicationand
loadimbalance,andcansubstantiallyincreasetheresourceutilization,by overlap-
ping computation,communicationandI/O over several jobs. In additionto that,
BufferedCoschedulingcreatesa framework to easily implementfault-tolerance,
arguablythemostimportantproblemto solve to build usable,largescaleparallel
computers.

1 Thr eeImportant Dimensionsin Parallel Computing

Clustersof workstationarebecomingwidespread,thanksto the availability of com-
modity componentsthatcanbeintegratedin a singlemachine.For example,by using
bladeservers,it is now possibleto stackseveralhundredsof processorsin asinglerack.
It is easyto predictthatin thenearfuturelargescaleclusters,with thousandsof proces-
sors,will move out of theboundariesof theresearchlabsandwill find their way into
commercialcomputing.In orderto have a critic view of thecurrentstateof theart in
parallelcomputingwe will organizeour discussionalongthreeimportantdimensions
(seeFigure1).

� ProgrammingandPerformance

� ResourceUtilization and

� Fault-Tolerance.

�
The work wassupportedby theU.S.Departmentof Energy throughLos AlamosNationalLaboratory

contractW-7405-ENG-36



RESOURCE MANAGEMENT

PROGRAMMING

FAULT−TOLERANCE

Figure1: Threeimportantdimensionsin parallelcomputing

1.1 Programming and Performance

Whenwetalk aboutaparallelcomputer, applicationperformanceis probablythemain
concern.In fact,thetraditionalgoalof a parallelcomputeris to solvea givenproblem
in aslittle time aspossible.But experiencehasshown thatextractingthe full perfor-
mancefrom a parallelcomputeris not aneasytask.

Most parallelprogramsarecodedusingMPI. Whenwriting aprogramin MPI, the
usermustpayattentionto a largenumberof details. It mustdivide the input dataset
in a numberof distinct domains,maptheselogical domainsonto a setof processes,
defineaninter-processcommunicationschedule,typically basedon pairsof matching
sendsandreceives,setsynchronizationpoints,etc. This processis tediousanderror-
prone,andit is usuallydifficult to debug a parallelprogramandprove its correctness.
Obtaininggoodperformancefrom a working MPI programcanalsobea challenging
task.A loadimbalancein a singleprocesscanslow down thewholeparallelprogram.
Thecommunicationscheduleis alsocritical to achievegoodperformance.Many paral-
lel programshavea self-synchronizingbehavior, oftencalledbulk-synchronous,anda
slight loador communicationimbalancecanseverelyimpacttherun timeof thewhole
program. Simply put, parallelprogramsare“unstable” from a performancepoint of
view, andminorproblemscanhavea severeimpacton theoverallperformance.

MPI is a greatestcommondenominatorthat guaranteesportability acrossa wide
rangeof parallelarchitectures.But, in general,thereis little guaranteethat the same
levelof performanceof aprogramtunedfor aparticulararchitecturewill bemaintained
whenmoving to anotherarchitecture.In sequentialcomputing,we take for granted
thatanexistingprogramwill takeadvantagealmostautomaticallyof technologicalim-
provements(fasterprocessors,memory, I/O busetc),by simply recompilingthesource
code.This still doesn’t happenwith parallelcomputers.For this reason,large invest-
mentsfor developingparallelsoftwarearestill limited, andin mostcasesconfinedto
the nationallabsanda few companies.Developingparallel codeis clearly a major
obstacleto thewidespreaduseof parallelcomputers.Thetypical costof a ASCI-class
physicalsimulationcodeis in theorderof tensof millions of dollarsandit is probably



asexpensiveasthehardwareon which it runs.But thesecodeshave a life expectancy
of severaldecades,while thehardwarebecomesoutdatedin just a few years.

Thedevelopmentof scalablecommunicationlibrariesandsystemsoftwareis also
very time consuming.For example,the experiencewith the largestASCI machines
asBlue Mountainandthe30T machineat Los Alamos,or ASCI White at Livermore,
shows thatit takesa few yearsto eliminateall thebugs(typically raceconditions)and
scalabilitybottlenecks.It may soundodd, but usually thesemachinesbecomefully
functionalshortlybeforethey arephasedout. This is influencedby thecomplexity of
communicationlibrariesasMPI, which have morethan200functioncalls,andby the
inherentnon-determinismof thecommunicationlayer.

1.2 ResourceManagement

Most largescalecomputersallocatetheresourcesin spacesharing.For example,when
we launcha paralleljob, theresourcemanagementsystemin useon themachineallo-
catesa subsetof processors/processingnodes,all their memory, network andI/O sub-
systems.This winner-take-all approachhasseveral limitations. Somein-depthstudies
andcharacterizationsof largescaleASCI codesshow that theseprogramshave a pro-
nouncedbulk-synchronousbehavior. All the processescomputethe cells in a given
domainall togetherfor a few milliseconds. Then they all stopandperformandex-
changeof data,typically accordinga well-definedcommunicationstencilwith a setof
logicalneighbors,againfor a few milliseconds.Lessfrequently, they performI/O. The
typical I/O patternsarecheckpointing(roughly80%of I/O traffic) anddatacollection
(theremaining20%),in orderto analyzetheprogressof thecomputation.In all these
phases,only onetype of resourceis used. For example,whenthe job is computing,
bothnetwork andI/O areidle, whenit is communicating,all processorsandI/O arenot
in use,andwhenit is doingI/O only a smallfractionof thenetwork is used.

If we give a critical look to how resourcesareallocatedin a parallelcomputer, we
canfind astrongresemblancebetweenthestateof theartandtheoperatingsystemsfor
PCsof theearlyeighties,asMicrosoft DOS.In suchsystems,theuserwasableto run
a singleprogramat a time. Any PCuser, would nowadaysfind unacceptableto run a
singleprogramat a time (for examplereadinge-mail,usinga webbrowser, accessing
the file system,etc) andwe take for grantedthat the operatingsystemcanmultitask
several activities at the sametime. We canprint a file, andwhile doing that,we can
continueusingtheavailableresourcesfor executingothertasks.Unfortunately, this is
not yetpossiblein a parallelcomputer.

Resourcemanagershave alsomany scalability limitations. The typical resource
manageris structuredasa collectionof deamons,eachonerunningon a distinctnode,
thatcommunicatewith slow, point-to-pointTCP/IPconnections.Theexisting produc-
tion systemsshow that this designis inherentlynot scalable,dueto boththeoverhead
of thecommunicationlibrary andto thealgorithmicdesignof thecommunicationpat-
ternsthatdistributeandgathercontrolmessagesanddata.

1.3 Fault-Tolerance

Thelast,but probablymostimportantdimensionis thefault-tolerance.An ASCI-class
machineasthe30T, will havemorethan12000processors,morethan6000network in-
terfaces,tensof thousandsof cables.A preliminaryanalyticalevaluationof theMTBF



shows that the machinewill be up, on the average,only a few hours. The probabil-
ity that a 4096processorjob, running for 5 hourswill successfullycompleteis less
than50%. A commonapproachto alleviate this problemis to partition the machine
in smallersegments,andusethesesegmentsas independentmachines. Insideeach
segment,theapplicationsrunauser-level checkpointingalgorithmat regularintervals.
Thecheckpointis implementedwith arathersimplealgorithm:thewholeapplicationis
halted,andeachprocessdumpinto thefile systemtherelevantstateof thecomputation.
ThecheckpointI/O traffic is roughlyestimatedas80%of thewholeI/O traffic.

An alternative approachis to checkpointthe statusof a job while it is running,
in an incrementalandtransparentway. Unfortunately, the stateof the art in dynamic
checkpointingis still in its infancy. The main algorithmicchallengebehinddynamic
checkpointingis to identify a consistentglobal state,to which the job canrollback,
shoulda fault occur. The identificationof suchglobal stateis not trivial, becausethe
algorithmsmust take into accountmany details,suchas the messagesin transitand
the interactionwith the file system,and becausethesealgorithmscan only rely on
limited, local information on the global state. If the distributed algorithmsare not
carefullydesigned,theonly valid globalstatecanbetheinitial oneat launchtime,thus
generatingthesocalled“dominoeffect”. Thestateof theart in dynamiccheckpointing
is Egida,a transparent,low-overheadenvironmentthat incrementallycheckpointsthe
statusof anMPI job at run time,developpedatUT Austin. Theinitial resultsshow the
scalabilityof this approachis limited to a few nodes,andit is not clearwhetherit will
bepossibleto scaleto alargenumberof nodesusingonly local information,in thenext
few years.

2 A caseStudy: 3-D Simulation of a Nuclear Weapon

Scientistsat LosAlamosandLivermorenationallaboratorieshaverecentlycompleted
two of the largestcomputersimulationsever attempted,the first full-systemthree-
dimensionalsimulationof a nuclearweapon1. TheLos Alamossimulationusedmore
than480 million cells on 1,920of the 8,192processorson the ASCI White machine
at Livermore.Theactualprocessingtime was2,931wall-clock hoursor 122.5days–
morethan6.6 million CPU hours. TheLivermoresimulationranon morethan1024
processorsof thesamemachineandtook39 daysto execute.

An in-depthperformanceevaluationof Sage[4], a sanitizedversionof the Los
Alamossimulationwhich maintainsthesamepropertiesof theoriginal code(compu-
tationalgranularity, communicationpattern,datasetetc),showsthat,whenwerunthis
applicationon a large numberof processor, no more than50% of the time is spent
computingandthe remainingtime is spentcommunicating.What is moreimportant,
this applicationdisplaya bulk-synchronousbehavior, thatstrictly alternatesthesetwo
phases.So,whentheprocessorsarecomputingthereis nocommunicationin theback-
groundandviceversa.Thisbehavior is morepronouncedwhenweusealargernumber
of processors.

In additionto that,about5 minutesevery hourarespentdoinga user-level check-
point. It is interestingto notethat theseapplicationswould requireall theprocessors,
all the memoryandall the time, if possible. But thereis a practicallimit to the re-
sourcesthatcanbeeffectively allocated.In fact in a largeconfigurationtheexpected

1http://www.lanl.gov/orgs/pa/newsbulletin/2002/03/08/text01.shtml



MTBF is only few hours,so a checkpointshouldtake placevery frequently, up to a
point wherevery little usefulwork getsdone.Thefrequency of thecheckpointis em-
pirically determinedby consideringtheperceivednumberof faultsperunit of timeand
theoverheadto performthecheckpointitself.

We canthusdraw two importantconsiderations.

1. Due to the lack of fault-tolerance,largescalemachinescannotbe fully usedas
capabilityengines.

2. If wesumtheidlestimesdueto communicationandcheckpoint,wecanseethat
we have theresourcesnecessaryto implementanother(virtual) supercomputer,
usingthesamehardware,which hasthesamecomputationcapability.

3 BufferedCoscheduling

BufferedCo-Scheduling(BCS) is a new methodologythat cansubstantiallyincrease
resourceutilization,simplify thedevelopmentof parallelcodeby toleratinginefficient
programsandenhancefault-tolerancein a largescaleparallelcomputer[1].

BCS multitasksparallel jobs. That is, insteadof overlappingcomputationwith
communicationandI/O within a single parallel program, all the communicationand
I/O which arisesfrom a set of parallel programs canbe overlappedwith the compu-
tationsin thoseprograms.We proposea new approachbasedon strobingheartbeats
at regular intervals,or time-slices,to tightly synchronizetheprocessorsandto sched-
ule thecommunicationandthecomputation.To implementthis multitasking,buffered
coschedulingrelieson two techniques.First, the communicationgeneratedby each
processis bufferedandperformedat the endof regular intervals (or time-slices).By
delayingcommunication,we allow for the global schedulingof the communication
pattern.Second,a strobingmechanismperformsan exchangeof control information
at theendof eachtime-slice.Thegoalis to moveaway from isolatedschedulingalgo-
rithms(whereprocessorsmakedecisionsbasedsolelyontheir localstatusandalimited
view of theremotestatus)to moreoutward-lookingor globalschedulingalgorithms.

3.1 Communication Buffering

In BCSevery communicationprimitive is implementedby filling in a descriptorwith
all the importantinformation.For example,whenexecutinga point to point send,the
descriptorcontainsinformationon thesourceanddestinationprocesses,communica-
tion buffers,tagmatchingetc. If thecommunicationprimitive is blocking,theprocess
is suspendedand will be waken up when all the communicationprotocol hasbeen
successfullycompleted,for exampleby a local scheduleror by theOS,dependingon
the typeof implementation.Whenexecutinga nonblockingprimitive, theprocessis
not interrupted. In both blocking andnon-blockingcase,the actualcommunication
protocol is not eagerlyperformed,as donein virtually all existing implementations
of communicationlibraries. The goal is to collect as much information aspossible
on the global stateof the machine,beforesendinga message.Also, by delayingthe
communication,we greatlysimplify theimplementationof thefault-toleranceandthe



communicationlibrary itself, asexplainedbelow. Dependingon the type of imple-
mentation,theactualcommunicationprotocolcanberun by a daemonprocess,by the
kernelor, moreaggressively, by a network interface,usinga low-overheadprotocol.

3.2 Strobing

At the core of BCS thereis the strobingalgorithm, which tries to strictly schedule
all the activities in a parallelmachineat regular intervals, called time-slices. Some
importantstepsof this algorithmarelistedbelow.

1. Distribution of the startstrobesignal: this control messageis distributedto all
processingnodes,possiblywith little skew. Strobesignalsaredeliveredat every
time-slice.Dependingon thearchitecturalsupportavailable,thestartstrobecan
be deliveredusinga dedicatednetwork, asthe controlnetwork availablein the
ConnectionMachineCM-5 [5], throughsomehardwaremulticastcapabilityof
thedatanetwork, if available,of emulatedwith a tree-basedsoftwaremulticast.

2. Distribution of control information: after thedelivery of thestartstrobe,all the
nodesdistributetherelevantcontrolinformation,for examplethecommunication
buffers,in orderto scheduleall thecommunication.

3. Performtheactualschedulingof thecommunication.Themaingoal is to send
in eachtime-sliceonly the messagesthat can be actually be deliveredby the
network andsent/receivedby theprocessingnodesin thecurrenttime-slice.For
exampleif aprocessingnodecandeliver

�
MB/sec,duringatime-sliceof length

�
sec,it will only beableto send/receive

� �
MB of data,in theoptimalcase.

So thereis no advantagein trying to overcomethis limit. Also, thescheduling
algorithmcandelaythetransmissionof messageswhosedestinationbuffersare
pagedout, thusavoidingexpensivere-transmissions.

-

DESC DESC

COMMUNICATION 
SCHEDULING

COMMUNICATION 
SCHEDULING

∆ ∆ ∆

DESC DESC

1 2

3
4 5

6 7

COMPUTATION

COMMUNICATION

Figure2: StrobingAlgorithm

Someintuition on the strobingalgorithmis provided in Figure2. The Figurede-
scribesa possibleexecutionscenarioon a specificprocessor. Theprocessorexecutes
a processwhich issuestwo non-blockingcalls (Figure2 step1 and2) within thefirst
time-slice

�
. Thecallsfill in two communicationdescriptorsandtheprocesscontin-

uesits computation.After thearrival of thestartstrobe(step3), we try to schedulethe



communicationby matchingthe pendingdescriptors.For example,we try to resolve
any pairsof matchingsendsandreceives.At thispointweschedulethesubsetof com-
municationsthatcanbeactuallydeliveredin thecurrenttime-slice.We try to overlap
thosecommunicationswith the ongoingcomputation.In the presenceof a blocking
call (step6), thecallingprocessis suspendedandanotherprocessbelongingto another
job thatis readyto runis scheduledontheprocessor. It is worthnotingthatthestrobing
time-sliceis differentfrom thejob schedulingtime-slicewhich, in thegeneralcase,is
anintegermultipleof thestrobingone.

3.3 Toleranceto Inefficient Programs

BCSis ableto toleratetwo typesof inefficienciesin theuserapplications:

1. transientloadimbalanceand

2. high communicationoverhead.

Thetraditionalapproachin parallelprogramdevelopment,is to reduceloadimbalance
within thesingleprogram.This canbevery time consuming,in particularwith those
applications,asAdaptiveMeshRefinement(AMR) wheretheprocessorloadvariesat
run time. Ratherthenleaving the burdenon the programmer, andincreasingthecost
of parallelsoftware,BCStriesto balancetheprocessorloadovera setof paralleljobs
at run time. Figure3 providessomeintuition on how BCS cancompensatetransient
load imbalanceover multiple jobs. An extensive simulationanalysis[2] shows that,
if we put togethera few parallel jobs with a pronouncedand randomlydistributed
load imbalance,BCS can achieve almostoptimal processorutilization. BCS in its
basicform cannothandlepermanentloadimbalance,theonegeneratedby applications
that have someprocessesconsistentlyunderloaded/overloaded. This problemcanbe
handledwith abuilt-in processmigrationmechanism,discussedbelow.

Whenwescaleanapplicationto a largenumberof nodes,we inevitably expandthe
communicationtime. We cantoleratethe communicationoverheadin the sameway
wetolerateloadimbalance,by overlappingcomputationandcommunicationof several
jobs. Figure3 shows how thecommunicationgeneratedby threejobscanbeglobally
optimized.

BCScanthustransforma collectionof ill-behaveduserprogramsin a single,well
behaved, systemprogram. BCS can perform theseoptimizationswithout changing
the individual applications. This is an extremelyimportantaspect,becauseprogram
developmentandoptimizationcanbeveryexpensive.

3.4 Impr oved ResourceUtilization

Many studiesin the literatureshow thata gangscheduledsystemcanhave a response
timeordersof magnitudefasterthanaspaced-sharedone.In arecentwork, weshowed
that jobs spendmost of their time waiting, rather than running (75% vs 25%) [6].
Gangschedulingsubstantiallyreducesthefirst term,becausejobscanenterthesystem
muchearlier, by slightly increasingthe secondterm, becauserunningjobs sharethe
processors.

BCSfurtherimprovestheseresultsby overlappingtheuseof theresourcesbetween
multiple jobs. We estimated,usingtheutilization logsover a periodof six monthsof



-
P1

P2

P3

P4

P1

P2

P3

P4

δ δ δ δ δ δ δδ

TIME

COMPUTATION

COMMUNICATION

TIME

Figure3: Filling in computationandcommunicationholes

Nirvana,a 1 TeraOpunclassifiedmachineat Los Alamos,thatwe canalmostdouble
resourceutilization.

3.5 EnhancedFault-Tolerance

BCScreatesa framework to implementa fault-tolerancemodelbasedon incremental
checkpointsandtheuseof sparenodesto replacethefaultyonesover time.

BCS schedulesall communicationin order to have a quiescentsystem,possibly
with no messagesin transit,at theendof eachtime-slice. In this way we canclearly
identify a valid stateto checkpoint,which is simply representedby thememoryimage
of eachprocessplus thecommunicationdescriptorsat theendof specifictime-slices.
In fact, it is enoughto markas“dirty” thosepagesthathave beenoverwrittenduring
eachgroupof time-slicesthat representa checkpointquantumandflush themto safe
storage.Thecheckpointtraffic canbescheduledasabackgroundtraffic andcanbesent
togetherwith thehighpriority network traffic. An interestingby-productof BCSis that
thesameinfrastructurethat implementsthecheckpointcanbealsousedto implement
processmigration,andhenceaddressloadimbalance.

The strobingalgorithmis a key point to implementfault-detection.In fact, it is
possibleto combineto thestartstrobephasea diagnosticphaseto checkthestatusof
thenodes,andidentify thefaulty ones,if needed.

4 Preliminary Results

In the last yearwe obtaineda numberof scientificandtechnicalresultsthat build a
solid foundationfor the successof BCS. They addressseveral aspects,that include
an in-depthperformanceevaluationof an importantASCI application,an innovative
way to implementthestrobingalgorithmsin few tensof microsecondsin thousandsof
nodes,astudyof thedynamicsof incrementalcheckpointandaninitial implementation
of BCS.

4.1 PerformanceEvaluation of Sage

In [4] we have providedan in-depthevaluationof an ASCI code,calledSage,which
is consideredrepresentative of 70%of thecomputingcycleson ASCI machines.The
analysisshow that,whenrun in a largenumberof processors,theseapplicationsuse



only a fraction of the computingtime (about50%) anddisplay a pronouncedbulk-
synchronousbehavior, which cyclically alternatesphasesof computationandcommu-
nication.

4.2 HardwareSupport for Multicast Communication

We recentlyprovedthatby usingthehardwaremulticastof theQuadricsnetwork [8]
[7], it is possibleto implementthe strobingalgorithmin as little as few tensof mi-
croseconds,in machineconfigurationswith thousandsof nodes.Thesheerspeedof the
mechanismandits scalability(therun time is almostconstant,irrespectivethenumber
of nodes)show thatBCScanbeefficiently implementedon largescalecomputers.The
Quadricsnetwork is currentlyusedby someof thelargestsupercomputersin theworld,
astheLosAlamosASCI 30T, TerascaleComputeratPittsburghSupercomputingCen-
ter, CEA (France),LLNL etc.

4.3 Dynamic of the Incr ementalCheckpoint

A work in progressshows that, in mostscientificapplicationsthesizeof theworking
setthatmustbeincrementallycheckpointedis relatively small,andalmostinsensitive
to thememoryfootprint of theapplication,but only sensitive to thesizeof checkpoint
interval. A preliminarystudyof Sage,shows that on the ASCI 30T, the checkpoint-
inducedtraffic would only require10%of backgroundbandwidth.

4.4 STORM: A ScalableTOol for ResourceManagement

We areimplementingan initial prototypeof BCS,calledSTORM [3] on Alphaserver
andIntel-basedLinux clusters.Theexperimentalresultsshow thatSTORM canper-
form the strobingalgorithmin few tensof microseconds,usingthehardwaresupport
for multicastprovided by the Quadricsnetwork. It canalsodistribute and launcha
12MB executableon a 256-processor/64-nodeAlphaserver cluster in lessthan 150
milliseconds.Thegangschedulercanperformaglobalcontext switchasfastasa local
schedulingdecisionin few hundredsof microseconds,by using an optimizedalgo-
rithm runningon thenetwork interfaceprocessor. To thebestof ourknowledge,this is
at leasttwo ordersof magnitudefasterthanany existingproductionresourcemanagers
in launchingjobs,performingresourcemanagementtasksandgangscheduling.

5 Conclusion

In this paperwe have providedanoverview of whatwe think arethemajorproblems
to build usable,large scaleparallel computers. Buffered Coschedulingpoints to a
completelynew directionandprovidesanoriginalapproachthatcanleadto thesolution
of someof thoseproblems. We hopethat our work on BufferedCoschedulingwill
prodinsightfuldiscussionsontheproblemsof parallelprogramdevelopment,resource
utilizationandfault-toleranceat the“Scalingto New Heights”workshop.



References
[1] Fabrizio Petrini andWu-chunFeng. Buffered Coscheduling:A New Methodologyfor Multitasking

Parallel Jobson Distributed Systems. In Proceedings of the International Parallel and Distributed
Processing Symposium 2000, IPDPS2000, volume16,Cancun,MX, May 2000.

[2] FabrizioPetriniandWu-chunFeng.Schedulingwith GlobalInformationin DistributedSystems.In Pro-
ceedings of the The 20th International Conference on Distributed Computing Systems, Taipei,Taiwan,
Republicof China,April 2000.

[3] Eitan Frachtenberg, Fabrizio Petrini, JuanFernandez,ScottPakin, andMike Lang. ManagingLarge-
ScaleAlphaserverClustersin theBlink of anEye.In CAST (Compaq User Group) 2002, SanFrancisco,
CA, April 2002.

[4] DarrenKerbyson,HankAlme, Adolfy Hoisie,FabrizioPetrini,Harvey Wasserman,andMike Gittings.
Predictive Performanceand Scalability Modeling of a Large-ScaleApplication. In Supercomputing
2001, Denver, CO,November2001.

[5] CharlesE. Leisersonetal. TheNetwork Architectureof theConnectionMachineCM-5. In Proceedings
of the 4th Annual ACM Symposium on Parallel Algorithms and Architectures, pages272–285,June1992.

[6] Fabrizio Petrini and Wu chun Feng. ResourceUtilization and Parallel ProgramDevelopmentwith
BufferedCoscheduling.Technicalreport,LOsAlamosNationalLaboratory, 2000.LaboratoryDirected
ResearchandDevelopment,ExploratoryResearch.

[7] FabrizioPetrini,Wu chunFeng,Adolfy Hoisie,SalvadorColl, andEitanFrachtenberg. TheQuadrics
Network: High PerformanceClusteringTechnology.IEEE Micro, 22(1):46–57,January-February2002.

[8] Fabriziopetrini,SalvadorColl, EitanFrachtenberg, andAdolfy Hoisie. Hardware-BasedandSoftware-
BasedCollective Communicationon theQuadricsNetwork. In Proceedings of the IEEE International
Symposium on Network Computing and Applications, Cambridge,MA, October2001.


